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Abstract 

Because the general problem of predicting the ter­
tiary structure of a globular protein from its se­
quence is 80 difficult, researchers have tried to 
predict regular substructures, known as secondary 
structures, of proteins. Knowledge of the posi­
tion of these structures in the sequence can signif­
icantly constrain the possible conformations of the 
protein. Traditional protein secondary structures 
are a-helices, .a-sheets, and coil. Secondary struc­
ture prediction programs have been developed, 
based upon several different algorithms. Such 
systems, despite their varied natures, are noted . 
for their universal limit on prediction accuracy of 
about 65%. A possible cause for this limit is that 
traditional secondary structure classes are only a 
coarse characterization of local structure in pro­
teins. This work presents the results of an alterna.­
tive approach where local structure classes in pro­
teins are derived using neural network and clus­
tering techniques. These give a set of local struc­
ture categories, which we call Structural Building 
Blocks (SBEs), based upon the data itself, rather 
than a priori categories imposed upon the data. 
Analysis of SBBs shows that these categories are 
general classifications, and that they account for 
recognized helical and strand regions, as well as 
novel categories such as N- and C-caps of helices 
and strands. 

Introduction 
Traditionally, protein structure has been classified 
into continuous segments of amino acids called sec­
ondary "tructures. The existence of the regular sec­
ondary structures, a-helices and ,t1-sheets, was hypoth­
esized even before the first protein structure had been 
SOIVed at atomic resolution. [Pauling and Corey, 1951; 
Pauling d al., 1951]. These structures have regular 
\Ipatterns of hydrogen bonding and repeating backbone 
:dihedral angles and are easy to locate in protein crys­
Ital structures. Following the solution of a few pro­
tein structures, Venkatachalam suggested the existence 
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of a third class of structure, the .a-turn [Venkatacha­
lam) 1958]. Often, the remainder of protein structure 
is called "coil" or "'other"; however I attempts have 
been made to identify other structures such as O-loops 
[Leszczynski and Rose, 1986] or 0, .straps, and (-loops 
[Ring et al., 1992] in these regions. 

Because the cla.ssical secondary structures were pre­
dicted before any protein structures were solved and 
because these regular structures are so easy to iden­
tify by eye in visualized protein structures, these cat­
egories have traditionally been used in protein struc­
ture prediction routines. From the earliest prediction 
algorithms [Chou and Fasman, 1974], through artificial 
neural network models [Qian and Sejnowski, 1988], to 
current hybrid systems using multiple prediction al­
gorithms [Zhang et al., 1992], these systems consis­
tently used the traditional secondary structures, usu­
ally the categories provided by the DSSP program 
[Kabsch and Sander, 1983]. Despite the variety of 
algorithms used, the best prediction rates for these 
programs consistently classify only about 65% of the 
residues' secondary structures correctly. This rate of 
accuracy is too low to be of practical use in constrain­
ing the conformation for tertiary structure prediction. 
Re-categorization of protein structure may be one way 
of increasing prediction accuracy 

One indication that these classical secondary struc­
tures may not be suitable is that attempts to define sec­
ondary structures in proteins of known structure pro­
duce inconsistent results. Such programs may use the 
criteria of hydrogen bonding [Presta and Rose, 1988], 
alpha carbon dihedral angles [lUchards and Kun­
drot, 1988], backbone dihedral angles or some com­
bination of these criteria [Kabsch and Sander, 1983; 
Richardson and Richardson, 1988]. When compar­
ing output from these programs which use proteins 
of known structure, there is a great deal of disagree­
ment in their secondary structure assignments (Fetrow 
and Berg, unpublished observations). It thus seems 
reasonable to hypothesize that the classical categories 
of secondary structures are too coarse and attempts 
to predict such artificial categories will ultimately fail 
[Zhang et al., 1992]. 
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Figure 1: The bond and dihedral angles used for residue-feature-vector representatioOB. For simplicity, a window size of 
{our is displayed. A bond angle 8i-1,i+1 is the virtual angle formed by the three Co atoIIlB centered at ·residue i. The dihedral 
angle 4Ji,i+3 is defined A.8 the angle between the virtual bond between Co,i and C o ,i+l and the virtual bond between C o ,i+2 

and C o ,i+3 in the plane perpendicular to the virtual bond formed between C a ,i+l and Co ,i+2. 

The purpose of this research, therefore, is to at­
tempt an objective re-classification of protein sec­
ondary structure. Here we present the results of a cat­
egorization system combining artificial neural network 
and clustering techniques. The first part of the system 
is an auto-associative artificial neural network, called 
GENEREP (GENErator of REPresentations), which 
can generate structural representations for a protein 
given its three-dimensional residue coordinates. Clus­
tering techniques are then used on these representa­
tions to produce a set of six categories which represent 
local structure in proteins. These categories, called 
Stnletural Building Blocks (SBBs), are general, as in­
dicated by the fact that the categories produced us­
ing two disjoint sets of proteins are highly correlated. 
SBBs can account for helices and strands, acknowl­
edged local structures such as N- and C-caps for he­
lices, as well as novel structures such as N- and C-caps 
for strands. 

Methods and Materials 
The initial goal of this work was to find a low-level 
representation of local protein structure that could be 
used as the basis for finding general categories of lo­
cal structure. These low-level representations of local 
regions were used as input to an auto-associative neu­
ral network. The hidden layer activations produced 
by this network for each local region were then fed to 
a clustering algorithm, which grouped the activation 
patterns into a specified number of categories, which 
was allowed to vary from three to ten. Patterns and 
category groupings were generated by networks trained 
on two disjoint sets of proteins. The correlations be­
tween the categories generated by the two networks 
were compared to test the generality of the categories 
and the relative quality of. the categories found using 
different cluster sizes. 

The structural categories found along protein se­
quences were then analyzed using pattern recognition 
software in order to find frequently occurring group­
ings of categories. Molecular modeling software was 
also used to characterize and visualize both the cate­

gories themselves and the groupings found by the pat­
tern recognizer. 

In contrast to earlier work on GENEREP [Zhang 
and Waltz, 1993L in which a measure of residue 
solvent-accessibility was used, a purely structural de­
scription of the protein was employed in this study, as 
well as a more general input/output encoding scheme 
for the neural network. Each protein was analyzed as 
a series of seven-residue "windows". The residues were 
represented by the seven a-carbon (Co) atoms of the 
adjacent residues. The structure of the atoms in the 
window was represented by several geometric proper­
ties. For all except adjacent Co atoms, the distances 
between each pair of Co atoms in the window were 
measured. The distance between adjacent atoms was 
not utilized because it is relatively invariant. There 
were fifteen such distances per window. The four dihe­
dral and five bond angles which specify the geometry 
of the seven Co atoms in each window were used as 
well (Figure 1). 

Because these measurements were used as input to 
an artificial neural network, they had to be represented 
in a form that was consistent with the values of the 
network's units, while also preserving information im­
plicit in the measurements. The following encoding 
was used. Each dihedral angle was represented using 
two units, one each for the sine and cosine of the an­
gle. These were normalized to the value range [0,1] 
of the input units. This representation preserved the 
continuity and similarity of similar angles, even across 
thresholds such as 3600 to 00. The distances were rep­
resented using two units. Analysis of the distances 
showed a rough hi-modal distribution of distance val­
ues. The units were arranged so that the activation 
level of the first unit represented a distance from the 
minimum distance value found to a point mid-way be­
tween the two "humps" of the distribution. If the dis­
tance was greater than the value of the mid-way point, 
the first unit was fully activated, and the second unit 
activated in proportion to how much the distance was 
between the mid-way point and the maximum distance 
value. The bond angles were each represented using 
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Figure 2: The a.uto-associa.tive neural network used in this study to find the residue-state-vectors. This network was 
trained using the residue-feature-vectors described in Methods as both the input and output patterns. The learning method 
used was error ba.clcpropagation [Rumelhart et al., 1986]. 

one unit, with the values representing the angles in 
the range [0°, 180°] normalized to [0, Ij. The represen­
tations of these Ca distances, dihedral and bond angles 
in a window constituted the rtsidue-fe.aturt-vector for 
a window. 

The residue-feature-vectors were calculated for ev­
ery window for each of the proteins in Table 1. The 
protein list, consisting of74 globular proteins of known 
structure, with 75 distinct sequence chains and a to= 
tal of 13,114 residues, was chosen such that all protein 
structures had a resolution of 2.5A or better and a re­
finement R-factor of 0.3 or less. These limits excluded 
proteins which were not resolved well enough to de­
termine their backbone structure satisfactorily. Using 
a standard sequence alignment algorithm [Smith and 
Waterman, 1981], the list was also tested to ensure 
that the amount of sequence similarity between pro­
teins was below 50%. This list of proteins was then 
divided into two disjoint sets, Data Set One and Data 
Set Two (Table 1). Subsequent work was done using 
the proteins in one data set and verified against the 
other. Data Set One consisted of 38 sequences con­
taining a total of 6650 residues. As defined by DSSP 
[Kabsch and Sander, 1983], 30.1% of the residues in 
this set were defined to be in a-helices and 18.9% in 
,6-strands. Data Set Two consisted of 37 sequences 
with a total 6464 residues. For this set, 30.8% of the 
residues were in a-helices and 18.2% were in J}-strands. 

For each protein, a residue-feature-vector was calcu­
lated at each position along the sequence for which 
there was an amino acid present in all slots of the 
window. Since they do not have residues in all of 
the window locations, the first three positions at both 
the N- and C-termini did not have residue-feature­
vectors associated with them. Thus, a protein sequence 
with n residues will provide n - 6 residue-feature­
vectors. Data Set One provided 6422 residue-feature­
vectors and Data Set Two provided 6242 residue­
feature-vectors. 

The residue-feature-veetors for a'given data set were 
used as both input and output patterns for an auto­
associative backpropagation neural network [Rumel­
hart et al., 1986]. Using the representation for the 
residue-feature-vectorn described above, both the input 
and output layers of the network contained 43 units. 
The hidden layer contained eight units (Figure 2). The 
hidden layer size was determined empirically as the 
smallest size which produced the network most likely 
to succeed at the auto-association task (where the root 
mean squared error of the network eventually went be­
low 0.01). 

The goal of an auto-associative network is to learn 
to reproduce the pattern of each input to the network 
at the output layer of the network. Each residue­
feature-vector pattern is presented individually to the 
network as a set of activations to the input layer. 
By multiplying each input unit's activation by the 
value of the weight connecting it to the hidden units, 
summing them at the hidden units, and then scaling 
them into [0, 1} with an exponentiation function, the 
hidden units' activation values are calculated. This 
same process is then used to calculate the output 
units' activations from the hidden units' activation 
values. The output units' activation values are then 
compared to those of the corresponding input units. 
These differences (the errors) are used to change the 
value of the weights between the layers, using error­
backpropagation [Rumelhart et al., 1986], a gradient 
descent technique. This process is repeated for each 
pattern in the data set, which constitutes an e.poch of 
training. 

In this study, the auto-associative networks were 
trained for some number of epochs (approximately 
1500) on a Connection Machine CM5 until the RMS 
error at the output layer was at most 0.01. At this 
point, the networks were run one additional epoch on 
the residue-feature-vector patterns, without changing 
the weights. For each pattern, the values of the hid­



Name Chains Residues Set Resolution Refinement Description 
155C 134 1 2.5A P. Denitrifica.n.s Cytochrome C550 
1ACX 107 1 2.oA Actinoxanthin 
1BP2 123 1 1.7A 0.171 Bovine phospholipase A2 
lCCR 111 1 1.5A 0.19 Rice Cytochrome C 
1CRN 46 1 1.5A Cn.mbin 
lCTF 68 1 1.7A 0.174 Ribosomal Protein (C terminal fragment) 
lECD 136 1 lo4A Deoxy hemoglobin (erythrocruorin) 
IFX1 147 1 2.oA Flavoooxin (D. Vulgaris) 
1HIP 85 1 2.oA 0.24 Oxidized High Potential Iron Protein 
IHMQ A 113 1 2.oA 0.173 Hemerythrin 
lLH1 153 1 2.oA Leghemoglobin (Acetate, Met) 
1MLT A 26 1 2.5A Melittin 
1NXB 62 1 1.38A 0.24 Neurotoxin 
IPAZ 120 1 1.55A 0.18 A. fa.ecaliB Pseudoazurin 
IPCY 99 1 1.6A 0.17 Plastoryanin 
1RNT 104 1 1.9A 0.18 Ribonuclease T1 complex 
1UBQ 76 1 1.8A 0.176 Human Ubiquitin 
2ACT 218 1 1.7A 0.171 Actinidin 
2APP 323 1 1.8A 0.136 Acid proteinase 
2AZA B 128 1 1.8A 0.188 Azurin (oxidized) 
2CAB 256 1 2.oA 0.193 Carbonic anhydrase 
2CNA 237 1 2.oA Jad Bean Concanavalin 
2CPP 405 1 1.63A 0.19 Cytochrome P450 
2CYP 287 1 1.7A 0.202 Yeast Cytochrome C peroxidase 
2HHB A 141 1 1.74A • 0.16 Human deoxyhemoglobin 
2LZM 164 1 1.7A 0.193 T4 Lysozyme 
2PRK 279 1 1.5A 0.167 Fungus Proteinase K 
2S0D B 151 1 2.oA 0.256 Cu Zn Superoxide dismutase (bovine) 
3ADK 194 1 2.1A 0.193 Porcine adenylate kinase 
31CB 75 1 2.3A 0.178 Bovine Calcium-binding protein 
3PGK 415 1 2.5A Yeast Phosphoglycerate kinase 
3RXN 52 1 1.5A Rubredoxin 
4ADH 374 1 2.4A 0.26 Equine Apo-liver alcohol dehydrogenase 
4DFR B 159 1 1.7A 0.155 Dihydrofolate reductase complex 
4PTI 58 1 1.5A 0.162 Trypsin inhibitor 
5CPA 307 1 1.54A Bovine carboxypeptidase 
7CAT A 498 1 2.5A 0.212 Beef catalase 
9PAP 212 1 1.65A 0.161 Papain CYS-25 (oxidized) 
lABP 306 2 204A L-arabinose binding protein E.Coli 
lCPV 108 2 1.85A 004 Ca-binding PaIvalbumin 
1FB4 H,L 445 2 1.9A 0.189 Human Immunoglobulin FAB 
1FDX 54 2 2.oA Ferredoxin 
1GCR 174 2 1.6A 0.23 Calf i-ays tallin 
1LZI 130 2 1.5A 0.177 Human Lysozyme 
1MBD 153 2 1.4A Deoxymyoglobin (Sperm Whale) 
1PHH 394 2 2.3A 0.193 hydroxybenzoate hydroxylase 
IPPT 36 2 1.37A Avian Pancreatic Polypeptide 
lRHD 293 2 2.5A Bovine rhodanese 
lRN3 124 2 1.45A 0.26 Bovine Ribonuclease A 
ISBT 275 2 2.5A Subtilisin 
ISN3 65 2 1.8A 1.3 Scorpion Neurotoxin 

Table 1: The protein structures used in this work. 



Name Chains Residue!' Set Resolution Refinement 
2ABX A i4 2 2.5A 0.24 
~APR 325 2 1.8A 0.143 
2B5C 85 2 2.oA 
2CCY A 127 2 1.67A 0.188 
2CDV 107 2 1.8A 0.176 
2CGA A 245 2 1.8A 0.173 
2CI2 I 65 2 2.oA 0.198 
2CTS 437 2 2.oA 0.161 
2GN5 87 2 2.3A 0.217 
2HHB B 141 2 1.74A 0.16 
2LHB 149 2 2.0A 0.142 
20VO 56 2 l.SA 0.199 
2PAB A 114 2 l.SA 0.29 
2SNS 141 2 l.SA 
351C 82 2 1.6A 0.195 
3C2C 112 2 1.68A 0.175 
3GAP A 20S 2 2.sA 0.25 
3GRS 461 2 2.oA 0.161 
3WGA B 171 2 1.8A 0.179 
3WRP 101 2 1.8A 0.204 
4FXN 138 2 1.8A 0.2 
4TLN 316 2 2.3A 0.169 
4TNC 160 2 2.oA 0.172 

Description
 
0' bunguo\.OXln
 
Acid Prot.ein~ (R. chinen.sis)
 
Bovine Cytochrome B5 (oxidized)
 
R. Mili.schia.num Cytochrome C' 
Cytochrome C3 (D. Vulgaris) 
Bovine Chymotrypsinogen 
Chymotrypsin inhibitor 
Pig citrate synthase 
Viral DNA Binding Protein 
Hum&n deoxyhemoglobin 
Hemoglobin V (Cyanomet, la.IIlprey) 
Ovomucoid third domain (protease inh.) 
Human prealbumin 
S. Nuclease complex 
Cytochrome C 551 (oxidized) 
R. Rubrum Cytochrome C 
E. Coli catabolite gene activator protein 
Human glutathione reductase 
Wheat Germ Agglutinin 
TRP aporepressor 
Flavodoxin (Semiquinone form) 
Thermolysin (B. thennoproteolyticus) 
Chicken Troponin C 

Table 1: The Protein Structures used in this work. The columns contain the following information: Narne: The name 
of the protein as assigned by the Broolchaven database. Chains: If the protem contains multiple ch.un.s, the chain used is 
indicated. Residues: The number of residues in the sequence, as indicated by DSSP. Set: 1 corresponds to Data Set One and 
2 to Data Set Two in this study. Resolution: The resolution of the structure, as given in the Broolchaven entry. Refinement: 
when available, the refinement as given in the Brookhaven entry. Description: A short description of the protein, based. upon 
the information in the Brookhaven entry. 

den layer units were recorded. This pattern of activa­
tion was the residue-state-vector associated with each 
residue-feature-veetor pattern. 

One auto-associative network was trained on the 
protein sequences in Data Set One and one on the pro­
tein sequences in Data Set Two. After training, the 
residue-state-vectors for Data Set Two were calculated 
by both the network trained on Data Set One and the 
network trained on Data Set Two. The residue-state­
vectors produced by each of the two networks were 
then separately grouped using a k-means clustering al­
gorithm [Hartigan and Wong, 1975]. Cluster sizes of 
three through ten were tested. Each residue-feature­
vector was then assigned the category found for it in 
the residue-state-veetor clustering for each network. 
The category assignments assigned by the clustering 
algorithm are the Structural Building Blocks (SBBs), 
and are the categories of local structure which form 
the basis for this study. 

To facilitate the location of interesting structural re­
gions along the protein sequence, the patterns of SBBs 
along the protein sequences were analyzed using sim­
ple pattern recognition software. For pattern sizes of 
three through seven, all of the patterns of SBBs oc­
curring along the protein sequence which occurred in 
the protein Data Set Two were tabulated. Frequency 

counts for these patterns were also calculated. For each 
SBB category, the most frequently occurring patterns 
were examined using molecular modeling and visual­
ization software (from Biosym Technologies, Inc.). The 
regions in proteins exhibiting the frequently occurring 
patterns of SBBs were displayed in order to analyze 
what structural properties they exhibited. 

Results 
In a network which masters the auto-association task 
of reproducing its input at its output layer, the activa­
tion levels of the hidden layer units must be an encod­
ing of the input pattern, because all information from 
the input to the output layers passes through the hid­
den layer in this architecture. Since the hidden layer 
constitutes a "narrow channel" , the encoding the net­
work develops must be an efficient one, where each 
unit corresponds to important properties necessary to 
reproduce the input and where there are minimal ac­
tivation value correlations among the units. We thus 
hypothesize that the encoding provided by the hidden 
layer activations provides the basis for general catego­
rization of the local structure of a protein. 

The ID06t appropriate cluster size for producing 
meaningful SBBs was determined empirically. For 
each cluster size used in k-means clustering (i.e. three 
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Figure 3: A compa.ri.son of the categorization results for different cluster sues. For each cluster size used in x-means 
clustering (i.e. three through ten), the best correlations between the categories found in Da.ta. Set Two by the two networh 
were compared, separately trained on Data Set One and Data Set Two. The mean, median, best (highest) and worst (lowest) 
oC these category correlations were then determined. 

through ten), the best correlations between the cat­
egories found in Data Set Two by the two networks 
trained separately on Data Set One and Data Set Two 
were compared. The mean, median, best and worst 
of these category correlations were then calculated.· 
There exists a steep relative dropotr in the mean and 
median correlations from clusterings using a category 
size of six to those using a. category size of seven (Fig­
ure 3), indicating that for these data sets category se­
lection becomes much less reproducible at a category 
size of seven, and further suggesting that the network 
is able to generalize at a category size of six. Thus, a 
clustering of the data into six structural categories was 
used throughout the remainder of this work. 

For 8. clustering using a category set of six, the cat­
egories are general, rather than reflecting properties 
specific to the data set on which a network was trained. 
The categories found by the two networks were highly 
correlated, even though the two networks were trained 
on disjoint sets of proteins (Table 2). 

To compare the SBBs and the traditional secondary 
st.ructure classifications, the overlap between the clas­
sifica:ion and standard secondary structure was calcu­
lated. For each SBB category, the number of times 
the central residue in an SBB was specified as a-helix, 
,8-strand or one of the other secondary structure cat­
egories by the DSSP program [Kabsch and Sander, 
1983] was calculated (Figure 4). For the network 
trained on Data Set One, SBB category 0 clearly ac­
counts for m06t of the a-helix secondary structure in 

A B C D E F 
0 -.21 -.35 -.23 -.26 -.21 0.94 
1 -.09 -.15 0.81 -.10 -.13 -.22 
2 -.19 0.84 -.10 -.04 -.20 -.36 
3 0.87 -.16 -.11 -.12 -.09 -.23 
4 -.12 -.19 -.12 -.11 0.86 -.22 
5 -.11 -.07 -.09 0.15 -.13 -.25 

Table 2: A comparison of the categories found in Data Set 
Two by a network trained on the protein sequences in that 
data set and a network trained on the protein sequences in 
Data Set One. Results shown are for the categories found 
with a. cluster s.et of six. The column! ue the categories (A 
through F) found in Data Set Two by the network trained. 
on Data. Set One. The rows are the categories (0 through 
5) found by the network tr6i.ned on Data Set Two. For 
each pair of categories the correla.tion ktween the cate­
gory found by the network trained. on Data Set One and 
the network trained on Data Set Two is given for their cat­
egoriza.tion of the sequences in Data Set Two. The best 
matches are indicated in bold type. 
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Figure 4: An analysis of the overlap between Structural Building Block ca.tegories and secondary structure classmcatlons. 
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Set One and the netwod: trained on Data Set Two. 

the sequences. SBB category 2 accounts for most of 
the ,a-strand, although it is almost as often identified 
with regions of "coil". Other SBB categories all have 
clearly delimited distributions with respect to the three 
secondary structure types. The generality of the cate­
gories is also shown. The SBBs found by each of the 
two networks which are most closely correlated (Ta­
ble 2) show essentially identical frequency distributions 
for the related categories. (Figure 4). 

In addition, there are strong amino acid preferences 
for the central residue in the SBBs (Table 3). For each 
amino acid in each SBB, the relative frequency, Fa was 
calculated by 

Fa = Xo/Xt 

No/Nt 

where X o is the number of residues of amino acid 
type X in SBB category Q. No is the total number 
of residues in SBB category a in the protein database 
used in this project. X t is the total number of residues 
of amino acid type X in the protein database. Nt is 
the total number of residues of all amino acid types 
in the entire database. For this calculation, the cen­
tral residue in each window was the residue considered. 
Amino acid preferences found for these six SEEs are 
stronger than the preferences for traditional secondary 
structures in these data sets (data not shown). 

To illustrate that the SBBs are significant structural 
elements, and not an artifact of the clustering tech­
nique, various classes of SBBs were visualized. One 
example is shown in Figure 5, where the 40 instances 
of SBB 4 along the sequence of the protein thermolysin 
(4tln) found with the network trained on Data Set 2 are 
superimposed. SBB 4 is clearly a cohesive structure, 
which can be characterized as having a 41sh-hook" 
shape. Upon visualization, this structure occurs most 

A C D E F G H 
0 1.47 0.67 0.90 1.47 1.10 0.53 0.99 
1 0.69 1.32 2.07 0.48 0.39 1.25 1.62 
2 0.83 1.33 0045 0.71 1.11 0.69 0.68 
3 0.92 0.46 1.43 1.27 0.73 0.80 0.43 
4 0.59 0.94 1.32 0.87 1.32 2.62 1.38 
5 0.81 1.62 0.69 0.55 0.92 1.12 1.27 

I K L M N P Q 
0 1.00 1.18 1.44 1.42 0.82 0.34 1.17 
1 0.60 0.57 0.51 0.73 1.91 1.50 0.77 
2 1.67 0.77 1.13 1.03 0.59 1.11 0.80 
3 0.50 1.24 0.40 0.53 1.08 2.95 1.03 
4 0.23 1.03 0.56 0.49 2.00 0.37 0.83 
5 1.38 1.01 1.02 1.01 DAD 0.99 1.24 

R S T V W Y 
0 1.18 0.67 0.71 0.91 1.33 0.84 
1 0.47 1.73 1.65 0.45 0.55 0.73 
2 1.01 0.80 1.28 1.89 1.06 1.35 
3 0.99 1.54 1.01 0.57 0.64 0.79 
4 0.87 0.99 0.66 0.46 0.75 1.02 
5 1.04 1.15 1.11 1.04 0.95 1.21 

Table 3: The relative frequency of each of the amino a.c:ids 
for the central residue position in each of the Structural 
Building Blod: classes, found by the network trained on 
Data Set One. The frequency counts are for that network's 
categorizations of the proteins in Data Set Two. Standard 
one-letter codes are used to represent the amino acids. 



Figure 5: The Structural Building Block. 4 for thermolysin. For the 40 instances of SBB 4 in therrnolysin, the renderings of 
the ba.ck.bone structural were aligned to minimize the RMS difference in the back.bone atom displacement (Insight II, Biosym 
Technologies, Inc.). Only the back.bone conforma.tions are shown. 

often at the C-terminal ends of a-helices (Figure 4) 
and in some loop regions. . 

By using molecular modeling and visualization soft­
ware, several clear correlations between SBBs and pro­
tein structure were found. One class of SBB corre­
sponds to the internal residues in helices and and one 
to the internal residues in strands. Also, different SBBs 
which correspond in many instances to N-terminal and 
C-terminal "caps" of helices were found [Richardson 
and Richardson, 1988; Presta and Rose, 1988]. In ad­
dition, SBBs which correspond to cap structures for 
strands were identified in many cases, a structural pat­
tern which has not yet been described, to the authors' 
knowledge. Comparing these results to the frequency 
counts for the corresponding SBB sequence patterns 
confirms that the various cap-structure and structure­
cap patterns are frequently occurring ones in the pro­
tein database. 

Discussion 
Based upon simple structural measurements, auto­
associative networks are able to induce a representa­
tion scheme, the major classifications of which prove to 
be Structural Building Blocks: general local structures 
of protein residue conformation. SBBs can be used 
to identify regions traditionally identified as helical or 
strand. Other SBBs are strongly associated with the 
N- and C-termini of helical regions. Perhaps most in­
teresting is that there are also SBBs clearly associated 
with the N- and C-termini of 3trand regions. Further, it 
is interesting to note that all structure, even that in the 

"random coil" parts of the protein, are well classified 
by these six SBBs. All of these results have been found 
both visually, using molecular modeling software and 
in the frequency results of the pattern generation soft­
ware for the patterns of SBBs associated with these 
structures. Further quantification of these results is 
underway. 

On the basis of these results, it is possible that SBBs 
are a useful way of representing local structure, one 
that is much more objective than the "traditional" 
model based upon a-helix and ,8-strand. The value of 
these more flexible structural representations may well 
be that they provide the basis for prediction and mod­
eling algorithms which surpass the performance and 
usefulness of current ones. 

Previous researchers have attempted novel recate­
gorizations of local protein structure [Rooman d al., 
1990; Unger et al., 1989]. However, the·work described 
here differs from theirs in at least one important re­
spect. They cluster directly on their one-dimensional 
structural criteria (e.g. CO' distances) and then subse­
quently do other processing (e.g. examination of Ra­
machandran plots) to refine their categories. SBBs are 
created by clustering on the hidden unit activation vec­
tors created when our more extensive structural crite­
ria (CO' distances, dihedral and bond angles) are pre­
sented to the neural network. By using the tendency of 
autoa.ssociative networks to learn similar hidden unit 
activation vectors for similar patterns, SBBs are de­
rived directly from multidimensional criteria without 
worrying about disparate dimensional extents distort­



ing the clustering, and without post-processing to re­
fine the classifications. ""·e hypothesize that the rep­
resentations for the hidden unit vectors developed by 
the network also reduce the effect. of spatial distortion 
and other "noise" in the data. This would yield cleaner 
data for the clustering algorithm, and more meaning­
ful classifications. Analyses are underway to test this 
hypothesis, and to compare the SBB classifications to 
those derived from these different methods. 

The results of the project described here can be read­
ily extended. Pattern recognition techniques can be 
used to provide more sophisticated induction mecha­
nisms to recognize the groupings of categories into reg­
ular expressions, and of the regular expressions into 
even higher-level groupings. Using molecular model­
ing software, the correspondence between the current 
categories, any higher-level structures found and the 
actual protein structures can be further investigated. 
The categories found in this research can be used as 
the basis for predictive algorithms. If successful, the 
results of such a predictive algorithm could be more 
easily used for full tertiary structure prediction than 
predictions of secondary structure. Because SBBs can 
be predicted for entire protein sequences, each SBB 
overlaps with neighboring SBBs and ea.ch SBB is a full 
description of the local backbone structure of that re­
gion of protein, SBB based predictions contain enough 
information that they can be used as input to standard­
distance geometry programs to predict the complete 
backbone structure of globular proteins. 
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